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1. Introduction

Plates on elastic foundations have been studied widely under the motivation of engineering
design, especially in civil and mechanical engineering problems, such as mat and raft foundations
and pavement slabs on soil. These types of problems are usually analyzed by assuming that the
foundation reacts in compression as well as in tension. Although this assumption simplifies the
problem considerably, it is questionable in many practical problems of civil and mechanical
engineering. It is realistic to expect that the contact between the plate and the foundation is
established only within the region where the plate penetrates into the foundation. Outside this
region the plate remains above the foundation and does not interact with it. Consequently, the
contact region is not known in advance and its extent depends on the geometry of the problem
and on the configuration of the loading. In this case the problem becomes non-linear and it can be
solved for the cases when the contact region has a simple geometry, such as a circle. However, for
complicated contact region, the solution can be accomplished by using iterative methods. There
are various studies dealing with beams and plates resting on a unilateral elastic foundation [1,2].
Solutions are given for circular plates on the tensionless foundation subjected to static loading
mostly by applying approximate solution techniques to the non-linear governing equations of the
problem [3–6]. The governing equations of the contact problems can also be derived by using a
variational formulation. However, the numerical solution can be obtained by using approximate
solution techniques [7]. On the other hand, when the problem is a dynamic one, i.e., oscillations of
a plate on a unilateral foundation, the boundary between the contact and the lift-off regions of the
plate depends on time. In this case the solution is accomplished by adopting step-wise solutions in
the time domain by updating the boundary continuously [8]. Recently, the forced vibrations of a
rigid circular plate supported by a tensionless Winkler support along the edge of the plate were
studied by assuming that the plate is subjected to a uniformly distributed load and a concentrated
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load [9]. Presently, this recent study is extended by considering a rigid circular plate subjected to a
uniformly distributed load and an off-centre concentrated load and resting on a tensionless
Winkler foundation. Numerical results are presented in figures to illustrate the static behaviour as
well as the dynamic oscillations of the plate, particularly focusing on the tensionless nature of the
foundation. The problem is solved by assuming the Winkler foundation model which is used for
many practical problems such as raft foundations, rails and underground pipes. However, the use
of a two-parameter foundation model may lead to more accurate results provided that the model
parameters can be determined precisely, which is quite a complicated task. As it will be seen, in the
present problem the curve between the contact region and the lift-off region is a straight line.
However, for a two parameter foundation it is a general curve which has to be determined
iteratively. Since the present paper aims to focus on the dynamic behaviour of a plate on a
tensionless foundation, the simplest foundation model is preferred to avoid unnecessary
sophistications.

2. Statement of the problem

The system considered is given in Fig. 1. It is a circular rigid plate of radius a; of mass M
subjected to a concentrated load PðtÞ having an eccentricity B and a uniformly distributed load
QðtÞ: The plate is assumed to be resting on a tensionless Winkler foundation having a modulus Kf :
Fig. 1 shows the plate partly penetrated into the foundation and partly lifted off the foundation.
Since the loading and the geometry of the plate are symmetric with respect to the radial axis of the
plate passing through the application point of the load P; the contact curve which separates the
contact and the lift-off regions is a straight line perpendicular to the symmetry axis as shown in
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Fig. 1. Circular rigid plate supported on a tensionless Winkler foundation.
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Fig. 1. The displacement function of the plate W ðR; y; tÞ will display the same symmetry and is
composed of a rigid vertical translation and rotation along the horizontal axis perpendicular to
the axis of symmetry. In fact, this simplifies the problem greatly. Thus, the equations of the
translation and the rotation motions of the rigid plate can be expressed as
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By reason of symmetry, only a half of the plate is considered in the integrations. As usual the
tensionless character of the elastic foundation under the plate is taken into consideration in
Eq. (1), by introducing the contact function HðR; y; tÞ defined as

HðR; y; tÞ ¼
1 for W ðR; y; tÞ > 0;

0 for W ðR; y; tÞp0:

(
ð2Þ

The contact function takes care that the foundation exerts to the plate pressure only, when the
plate penetrates into the foundation. The result of the foundation pressure and its moment is
obtained by carrying the integration within the contact region only, which is ensured by the
contact function. Due to the symmetry of problem, the translation and rotation of the rigid plate
can be expressed as follows:

W ðR; y; tÞ ¼ awðr; y; tÞ ¼ a½R0ðtÞ þ R1ðtÞr cos y�; ð3Þ

where

r ¼ R=a; t ¼ t
ffiffiffiffiffiffiffiffi
g=a

p
and R0ðtÞ and R1ðtÞ represent the non-dimensional rigid translation and rotation of the plate,
respectively. The lift-off angle y0 is to be evaluated from

y0ðtÞ ¼ arccos �
R0ðtÞ
R1ðtÞ

� �
ð4Þ

by assuming that 0py0pp: The complete separation and the complete contact of the plate to the
foundation correspond to the cases y0 ¼ 0 ðR0=R1p� 1Þ and y0 ¼ p ðR0=R1X1Þ; respectively.
Substitution of the displacement function (3) into equations of motion (1) leads to the following
system of two differential equations:

M .Rþ KR ¼ F; ð5Þ

where the dots denote the differentiation with respect to the non-dimensional time t and

RT ¼ ½R0ðtÞ;R1ðtÞ�; M ¼ ½mij�; K ¼ ½kijðtÞ�; F ¼ ½ fiðtÞ�;

m11 ¼ 1; m12 ¼ m21 ¼ 0; m22 ¼ 0:25; ð6Þ
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k11ðtÞ ¼ 2kf

Z p

0

Z 1

0

Hðr; y; tÞr dr dy;

k12ðtÞ ¼ k21ðtÞ ¼ 2kf

Z p

0

Z 1

0

Hðr; y; tÞ r2 cos y dr dy;

k22ðtÞ ¼ 2kf

Z p

0

Z 1

0

Hðr; y; tÞ r3 cos2y dr dy; f1ðtÞ ¼ qðtÞ þ pðtÞ; f2ðtÞ ¼ pðtÞb:

The non-dimensional load and foundation parameters introduced are defined as

p ¼
P

Mg
; q ¼

pa2Q

Mg
; b ¼

B

a
; kf ¼

Kf a3

Mg
: ð7Þ

Static and dynamic behaviour of the rigid plate is represented by the governing equation of
problem (5), which represents the small amplitude motion of the plate. Due to the tensionless
nature of the foundation, the stiffness matrix K is time-dependent and Eq. (5) is highly non-linear.
When a conventional Winkler foundation is assumed, it can be shown easily that the system has

two equal free vibration periods such as

T0 ¼ T1 ¼ 2
ffiffiffiffiffi
p
kf

r
; ð8Þ

which correspond to both the vertical and rotational free vibrations of the rigid plate.
The static configuration of the rigid plate subjected to uniformly distributed load Q and the

vertical off-centre load P can be studied easily by using the static version of Eq. (5)

KR ¼ F: ð9Þ

Assuming that in the case of static equilibrium, the contact takes place for 0pypy0; as Fig. 1
shows, the elements of the matrix K can be evaluated as follows:

k11 ¼ kf ½y0 � 0:5 sin 2y0�; k12 ¼ k21 ¼ 1
6

kf ½9 sin y0 � sin 3y0�;

k22 ¼ 0:25kf ½y0 � 0:25 sin 4y0�: ð10Þ

An unexpected property of the static solution is reported in various similar studies [1–3]. The
static solution is that the lift-off angle y0 does not depend on the magnitude of the loading but on
the modulus of the foundation only. In the present case, the R0 and R1 depend linearly on the
loading and the lift-off angle y0 does not depend on the level of the loading, when the plate is
subjected to only one of the loading cases (q or p). On the other hand, when the two types of the
loads are present—as it is in the present case—then the lift-off angle y0 will depend on the ratio of
the loads q=p ¼ pa2Q=P and the foundation modulus. In these cases, where the lift-off angle y0
does not depend on the loading level itself but only on the ratio q=p; the global vertical
equilibrium is established through the increase in the penetration of the rigid plate into the
foundation and through the increase in the displacements, without any change in the extent of the
contact region.
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3. Numerical results and discussion

The effects of the parameters of the system on the behaviour of the plate are studied by
obtaining various numerical results and presenting them in figures. The numerical procedure is
verified for a number of special cases. It has been used to produce a limited set of results. When
partial contact develops, the solution of the static case requires an iterative solution. On the other
hand, the dynamic behaviour of the system is obtained by assuming an initial condition for the
problem and by employing a step-wise numerical solution procedure for the governing differential
equation (5) along the time axis. At each time step the contact angle y0 is updated according to the
displacements of the plate at the previous time step and the elements of the matrix K are evaluated
accordingly.
In the case of the static loading, the configuration of the plate is obtained assuming kf ¼ 1:0

and p ¼ 1:0 for various values of the eccentricity b and that of the uniformly distributed load q:
Figs. 2(a)–(c) show the variations of the lift-off angle y0; the non-dimensional vertical
displacement R0 and the rotation R1; respectively. As it is seen, the lift-off comes into being,
when the eccentricity of the vertical load increases and when the distributed load decreases. When
no lift-off takes place, R0 and R1 are linear functions of the load q and the eccentricity b;
respectively. However, the dependency becomes non-linear, when a lift-off appears and the
vertical displacement and rotation increase rapidly. Figs. 3(a)–(c) display the similar variations for
kf ¼ 1:0 and q ¼ 0:5 for various values of the eccentricity b and the vertical load p: The inspection
of the figures reveals that the full contact is established, when the eccentricity b or the load p

decrease. The linear dependency of R0 and R1 on p and b can be observed, when no lift-off takes
place. However, large and non-linear increases in R0 and R1 arise as a result of the lift-off of the
plate from the foundation.
The present formulation does not have any restrictions concerning the time variation of the

induced loads as well as the initial conditions of the system. However, for numerical evaluation,
the initial configuration of the motion is assumed as the static equilibrium position of the plate
under the load q: Oscillations of the plate starts through the instantaneous application of the
vertical load. Under this assumption the dynamic behaviour of the system is presented in Fig. 4
for b ¼ 0:5 and kf ¼ 1:0 assuming that the vertical load p is increased to 1.0 instantaneously. The
time variation of the lift-off angle y0ðt), the displacement R0ðtÞ and the rotation R1ðtÞ are
displayed for various values of the load q: As Fig. 4(a) shows, the initial configuration of the plate
is axially symmetric having full contact due to the symmetry of the initial loading. In the course of
the oscillation, the full- and partial-contact cases follow each other for the present numerical
combination of the parameters. The linear period of the system can be evaluated from Eq. (8) as
2

ffiffiffi
p

p
for both vertical and rotational motions, assuming kf ¼ 1; provided that no lift-off takes

place. However, the motion becomes highly non-linear, when the lift-off develops. Although the
linear period of the motion can be identified in the oscillations of R0ðtÞ and R1ðtÞ; these variations
display a highly non-linear behaviour, when the lift-off takes place. Due to the partial contact the
linear harmonic variations of the parameters vanish, the system softens and the observable period
of the oscillations lengthens. Fig. 5 displays the variations y0ðtÞ; R0ðtÞ and R1ðtÞ for q ¼ 0:4 and
kf ¼ 1:0 for various values of the eccentricity b; assuming that the vertical load p is increased to
2.0 from zero instantaneously. Similar kind of time variations of these parameters of the problem
can be seen in these figures. As the inspection of the figures reveals, the lift-off emerges more
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Fig. 2. Variations of: (a) y0 lift-off angle for q=p ¼ 0:0; &; 0.4,W; 0.8, 3; 1.2,}; 1.6,’; 2.0, m; 2.4, �; (b) R0 vertical

displacement; and (c) R1 rotation depending on b eccentricity for q ¼ 0:0; &; 0.4,W; 0.8, 3; 1.2,}; 1.6,’; 2.0, m; 2.4,
�; and for kf ¼ 1:0; p ¼ 1:0:
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Fig. 3. Variations of: (a) y0 lift-off angle for p=q ¼ 0:0; &; 0.3,W; 0.5, 3; 1.0,}; 2.0,’; 3.0, m; 4.0, �; (b) R0 vertical

displacement; and (c) R1 rotation depending on b eccentricity for p ¼ 0:0; &; 0.3,W; 0.5, 3; 1.0,}; 2.0,’; 3.0, m; 4.0,
�; and for kf ¼ 1:0; q ¼ 0:5:
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Fig. 4. Time variations of (a) y0ðtÞ lift-off angle; (b) R0ðtÞ vertical displacement; and (c) R1ðtÞ rotation for kf ¼
1:0; b ¼ 0:5; p ¼ 0:0 (1.0); and for q ¼ 0:1; 3; 0.20, }; 0.4, ’; 0.6, m; 0.8, �; 1.0, ~:
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Fig. 5. Time variations of (a) y0ðtÞ lift-off angle; (b) R0ðtÞ vertical displacement and (c) R1ðtÞ rotation for kf ¼ 1:0;
q ¼ 0:0; p ¼ 0:0 (2.0); and for b ¼ 0:0; 3; 0.2, }; 0.4, ’; 0.6, m; 0.8, �; 1.0, ~:
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distinct and the non-linearity appears much more pronounced, as the eccentricity of the load p is
increased.

4. Conclusions

The static behaviour and forced oscillations of a rigid circular plate supported by a tensionless
Winkler elastic foundation have been studied by assuming that the plate is subjected to a
uniformly distributed load and a vertical load having an eccentricity. When a partial contact takes
place due to the tensionless nature of the foundation, the governing equations and consequently
the behaviour of the plate are non-linear, although the displacements of the plate are assumed to
be small. The static configuration of the plate is evaluated as a special case. Numerical results
are given in figures to determine the effects of the system parameters on the dynamic behaviour of
the plate. It is seen that lift-off has a significant effect on the motion of the plate, the recognizable
period of the oscillations is lengthened and the amplitudes become larger, because the tensionless
foundation model is relatively less constrained compared to the conventional one.
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